
Unsupervised Learning Notes

Patrick Yin

Updated June 22, 2022

1

Contents

1 Variational Autoencoders (VAEs) 3

2 Vector Quantized Variational Autoencoders (VQ-VAEs) 4

3 Deep Variational Information Bottleneck (VIB) 6

2

1 Variational Autoencoders (VAEs)

Paper here.

Let’s motivate VAEs in a principled way under the perspective of latent variable
models. Given raw data x, we assume that it has some underlying latent rep-
resentation z. Assume we draw zi ∼ p(z) (prior) and xi ∼ p(x|z) (likelihood).
Our goal is to infer good z from x (i.e. infer the posterior distribution p(z|x)).
Bayes’ theorem states that

p(z|x) = p(x|z)p(z)
p(x)

The denominator here, called the evidence, can be calculated directly with
p(x) =

∫
p(x|z)p(z)dz. However, this is intractable to calculate. So we use

variational inference, which seeks to approximate the posterior with qλ(z|x)
where λ are the parameters of distribution q. We use reverse KL to measure
how well q approximates p:

KL(qλ(z|x)∥p(z|x)) = Eq[log qλ(z|x)]−Eq[log p(x, z)] + log p(x)

We want q∗λ(z|x) = argminλ KL(qλ(z|x)∥p(z|x)), but this is intractable to di-
rectly compute due to the p(x) term. Instead, since p(x) is fixed, q∗λ(z|x) =
argminλ KL(qλ(z|x)∥p(z|x)) = argmaxλ ELBO(λ) where

ELBO(λ) = Eq[log p(x, z)]−Eq[log qλ(z|x)]

For a single datapoint xi, the ELBO is

ELBOi(λ) = Eqλ(z|xi)[log p(xi|z)]−KL(qλ(z|xi)∥p(z))

In deep learning, we parametrize our posterior qθ with an encoder and our
likelihood pϕ with a decoder. Then,

ELBOi(θ, ϕ) = Eqθ(z|xi)[log pϕ(xi|z)]−KL(qθ(z|xi)∥p(z))

In neural net language, the first term is the reconstruction loss and the second
term is the regularizer which keeps the representations z of each digit sufficiently
diverse. Also note that in order to take derivatives with respect to the parame-
ters of a stochastic variable, we reparametrize z = µ+ σ ⊙ ϵ where ϵ ∼ N(0, 1)
and use the neural network to predict (µ, σ).

3

https://arxiv.org/pdf/1312.6114.pdf

2 Vector Quantized Variational Autoencoders (VQ-
VAEs)

Paper here.

A Vector Quantised-Variational AutoEncoder (VQ-VAE) is a VAE with two
key differences:

1. The encoder outputs discrete codes.

2. The prior is learnt rather than static.

Using a VQ-VAE circumvents the “posterior collapse” issue and has no variance
issues unlike with VAEs.

2.1 Setup

The VQ-VAE is made up of an encoder ze, a codebook e, and a decoder p(x|zq).
The codebook is made up of K D-dimensional latent vectors ei. The encoder
encodes the input x into a tensor made up of D-dimensional vectors (i.e. ze(x)
could be a A×D matrix, A×B×D tensor, or some higher dimensional tensor).
We then map each vector in ze(x) to its closest codebook vector ei. In other
words,

zq(x)i = ek where k = argmin
j

∥ze(x)i − ej∥2

Lastly, we pass zq(x) into our decoder to get our reconstruction.

2.2 Loss

We can also formulate the VQ-VAE loss from the ELBO:

ELBOi(λ) = Eqλ(z|xi)[log p(xi|z)]−KL(qλ(z|xi)∥p(z))

Here qλ(z|xi) is 1 for z = ek where k = argminj ∥ze(x)i − ej∥2 and 0 for all
other ei. If we define a uniform prior over z, then

KL(qλ(z|xi)∥p(z)) =
K∑
i=1

qλ(z|xi) log
qλ(z|xi)

p(z)

= qλ(k|xi) log
qλ(k|xi)

p(k)

= 1 ˙log
1

1/K

= logK

Since this is just a constant, we only need to optimize over the reconstruction
section of the ELBO. Our final loss looks like

L = log p(x|zq(x)) + ∥sg[ze(x)]− e∥22 + β∥ze(x)− sg[e]|22

4

https://arxiv.org/pdf/1711.00937.pdf

where sg is the stopgradient. The first term is the same reconstruction loss term
we saw with VAEs. But how do we take this gradient since mapping ze(x) to
zq(x) is non-differentiable? One way is just to use a straight-through estimator,
where we simply copy gradients from zq(x) to ze(x) during backpropagation.
Note that as a result of straight-through gradient estimation, this reconstructive
loss term only updates the encoder and decoder. We also need to learn the
codebook. This is where the second term comes in, where we move codebook
vectors ei towards the encoder outputs ze(x). This term is called the Vector
Quantisation (VQ) objective or alignment loss. The third term, the commitment
loss, moves the encoder outputs closer to the codebook vectors. This ensures
the encoder commits to to its closest codebook vector. In practice, the results
seem quite robust to the commitment cost, β.

2.3 Prior

Once the VQ-VAE is fully trained end-to-end, we want to learn the prior. We
first freeze the weights of the encoder, codebook, and decoder. Then we can
train some autoregressive model, such as a PixelCNN, to fit the prior and then
generate x via ancestral sampling. To elaborate, we break down our prior au-
toregressively: p(z) = p(z1)p(z2|z1)p(z3|z1, z2)... where zi is the ith latent in
the sequence. We then train our autoregressive model to generate the ith latent
given the 1, ..., i − 1th latents. Then, to generate new samples, we can just
sample p(z1), then p(z2|z1), then p(z3|z1, z2), and so on. This is called ancestral
sampling. Then, we can compute p(z) and decode it with our frozen decoder.

5

3 Deep Variational Information Bottleneck (VIB)

Paper here.

3.1 Information Theory Basics

Before going into VIB, here is a brief recap of prerequisite information theory
principles.

3.1.1 Entropy

One core idea of information theory is trying to measure the ”informational
value” of a message, which translates to how much the message is surprising.
Less likely events translate to more informative messages, and more likely events
translate to less informative messages. We want the informational content of
event E, I(E), to be 0 when p(E) = 0 and increase as p(E) decreases. The
relationship that uniquely characterizes these properties is

I(E) = − log2(p(E))

Entropy of a random variable X, H(X), is defined as the average level of ”in-
formation” or ”surprise” over its possible outcomes. Specifically,

H(X) = E[I(X)] = E[− log p(X)] = −
∑
x∈X

p(x) log p(x)

with the last expression assuming X is a discrete random variable takes which
values in X .

3.1.2 Conditional Entropy

Conditional entropy, H(Y |X), is defined as the amount of information needed
to describe Y given that the value of X is known. The expression for H(Y |X)
can be derived as such. We know that

H(Y) = −
∑
y∈Y

pY (y) log2 pY (y)

Analogously,

H(Y |X = x) = −
∑
y∈Y

Pr(Y = y|X = x) log2 Pr(Y = y|X = x)

6

https://arxiv.org/pdf/1612.00410.pdf

H(Y |X) is the result of averaging H(Y |X = x) over all possible values x that
X may take:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

=
∑

x∈X ,y∈Y
p(x, y) log

p(x)

p(x, y)

Some properties that come out of conditional entropy definition is thatH(Y |X) =
0 if and only if Y is completely determined by X and H(Y |X) = H(Y) if and
only if Y and X are independent random.

3.1.3 Kullback-Leibler Divergence (KL Divergence)

Suppose we have an encrypted message x that may have come from sources
H1 or H2. Say we cannot decrypt either source, but from previous messages
we learned the typical frequencies of each symbol in the encryption protocols.
Then, we can update our belief from P (Hi) to P (Hi|x). Taking the log ratios,
we get

log
P (H1|x)
P (H2|x)

− log
P (H1)

P (H2)
= log

P (x|H1)

P (x|H2)

This measures the discriminating information of message x. If the actual source
of the message is H1, then the expected discriminating information is

KL(H1∥H2) =

∫
P (x|H1) log

P (x|H1)

P (x|H2)
dx

If the true source is H2, then we swap H1 and H2 to obtain KL(H2∥H1). In
summary, KL(H1∥H2) quantifies the expected change of belief in H1 when
observing a random event from H1.

3.1.4 Mutual Information

The mutual information between X and Y , I(X;Y), measures the information
X and Y share. In other words, it measures how much knowing one of these
variables reduces the uncertainty about the other. In the extreme case, if X and
Y are completely determined by one another, I(X;Y) reduces to the uncertainty
contained in Y (or X) alone, so I(X;Y) = H(X) = H(Y). In the other extreme
case, if X and Y are independent random variables, we want I(X;Y) = 0. So,
if X and Y are independent, then p(X,Y)(x, y) = pX(x) · pY (y), so

log
(p(X,Y)(x, y)

pX(x)pY (y)

)
= log 1 = 0

7

for all x, y. So define mutual information to be this:

I(X;Y) =
∑

x∈X ,y∈Y
p(X,Y)(x, y) log

(p(X,Y)(x, y)

pX(x)pY (y)

)
After rewriting this expression, we also see that

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X)

= I(Y ;X)

= EY [DKL(pX|Y ∥pX)]

≥ 0

3.2 VIB

We define some intermediate layer in a deep network as a stochastic encoding
Z of input source X defined by a parametric encoder p(z|x; θ). Our goal is to
learn an encoding Z maximally informative about our target Y measured by
I(Z, Y ; θ). However, if this was our only objective, the maximally informative
representation would be (Z = X). Instead, we need to apply a constraint
I(X,Z) ≤ Ic where Ic is the information constraint. This suggests the objective:

max
θ

I(Z, Y ; θ) s.t. I(X,Z; θ) ≤ Ic

Written with a Lagrange multiplier β, we get

RIB(θ) = I(Z, Y ; θ)− βI(Z,X; θ)

In other words, we want to learn an encoding Z that is maximally expressive
about Y while being maximally compressive about X, where β controls this
tradeoff. This is known as the information bottleneck (IB). The main drawback
of the IB principle is that computing mutual information is only computation-
ally tractable if X,Y, Z were all discrete or jointly Gaussian. Instead, we use
variational inference to construct a lower bound on the IB objective, which
the authors call VIB (variational information bottleneck). Let’s first examine
I(Z, Y):

I(Z, Y) =

∫
p(y, z) log

p(y|z)
p(y)

dy dz

where

p(y|z) =
∫

p(x, y, z)

p(z)
dx =

∫
p(y|x)p(z|x)p(x)

p(z)
dx

The last expression comes from the fact that since we have the Markov chain
Y ↔ X ↔ Z, p(X,Y, Z) = p(Z|X)p(Y |X)p(X). Since it is intractable to
compute p(z), let q(y|z) be a variational approximation to p(y|z). Since,

KL[p(Y |Z), q(Y |Z)] ≥ 0 =⇒
∫

p(y|z) log p(y|z) dy ≥
∫

p(y|z) log q(y|z) dy

8

Then,

I(Z, Y) ≥
∫

p(y, z) log
q(y|z)
p(y)

dy dz =

∫
p(y, z) log q(y|z) dy dz +H(Y)

H(Y) is independent of our optimization procedure, so we can rewrite our lower
bound for the first term of our objective as

I(Z, Y) ≥
∫

p(x)p(y|x)p(z|x) log q(y|z) dxdy dz

Next, let’s consider the term βI(Z,X):

I(Z,X) =

∫
p(x, z) log

p(z|x)
p(z)

dz dx

Computing p(z) =
∫
p(z|x)p(x) dx might be difficult, so let r(z) be the varia-

tional approximation of this marginal. SinceKL[p(Z), r(Z)] ≥ 0 =⇒
∫
p(z) log p(z) dz ≥∫

p(z) log r(z) dz, we have

I(Z,X) ≤
∫

p(x)p(z|x) log p(z|x)
r(z)

dxdz

Combining these two, we have

I(Z, Y)− βI(Z,X) ≥
∫

p(x)p(y|x)p(z|x) log q(y|z) dx dy dz

−β

∫
p(x)p(z|x) log p(z|x)

r(z)
dxdz = L

So to maximize our objective, we simply need to maximize the lower bound
L over our network parameters. Practically, we can approximate p(x, y) =
1
N

∑N
n=1 δxn

(x)δyn
(y), so

L ≈ 1

N

N∑
n=1

[∫
p(z|xn) log q(yn|z)− βp(z|xn) log

p(z|xn)

r(z)
dz

]

Also, in practice, we use an encoder of form p(z|x) = N (z|fµ
e (x), f

Σ
e (x)) where

fe is an MLP which outputs a K-dimensional µ and a K × K dimensional
Σ. Using the reparameterization trick, we write p(z|x) dz = p(ϵ) dϵ, where
z = f(x, e) is a deterministic function with Gaussian random variable ϵ. With
this reparameterization trick, our objective is to minimize

JIB =
1

N

N∑
n=1

Eϵ∼p(ϵ)[− log q(yn|f(xn, ϵ))] + βKL[p(Z|xn), r(Z)]

Note that in practice, r(z) is typically a fixedK-dimensional spherical Gaussian,
r(z) = N (z|0, I).

9

	Variational Autoencoders (VAEs)
	Vector Quantized Variational Autoencoders (VQ-VAEs)
	Deep Variational Information Bottleneck (VIB)

